-TAPESP

A topological game on the space of ultrafilters

José Carlos Fontanesi Kling

jose.kling@pm.me
Instituto de Ciências Matemáticas e de Computação ICMC - USP

Supervisor: Prof. Dr. Leandro Fiorini Aurichi

The game $G S(T)$

Rules

The game $G S(T)$

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.

The game $G S(T)$

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- Two players, Alice and Bob, take turns alternately.

The game $G S(T)$

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- Two players, Alice and Bob, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.

The game $G S(T)$

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- Two players, Alice and Bob, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.
- A play is an infinite string of pairwise distinct natural numbers $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$, the terms a_{n} indicating Alice's choices and b_{n} Bob's choices.

The game $G S(T)$

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- Two players, Alice and Bob, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.
- A play is an infinite string of pairwise distinct natural numbers $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$, the terms a_{n} indicating Alice's choices and b_{n} Bob's choices.
- Alice wins if the set of her choices during the game is in T, that is, $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \in T$. Bob wins otherwise.

The game $G S(T)$

We can turn this game into a standard Gale-Stewart game with the following modifications:

The game $G S(T)$

We can turn this game into a standard Gale-Stewart game with the following modifications:

- There are no restrictions to the players possible moves.

The game $G S(T)$

We can turn this game into a standard Gale-Stewart game with the following modifications:

- There are no restrictions to the players possible moves.
- Alice wins if the play is one of the following sets:
$\left\{\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \mid\left\{a_{1}, a_{2}, \ldots\right\} \in T\right.$ and all term are distinct $\}$
$\left\{\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \mid B o b\right.$ is the first to repeat some number $\}$

The game $G S(T)$

We can turn this game into a standard Gale-Stewart game with the following modifications:

- There are no restrictions to the players possible moves.
- Alice wins if the play is one of the following sets:
$\left\{\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \mid\left\{a_{1}, a_{2}, \ldots\right\} \in T\right.$ and all term are distinct $\}$
$\left\{\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \mid B o b\right.$ is the first to repeat some number $\}$
We are most interested in some specific targets, namely ultrafilters and sets that arise in Ramsey theoretical results, such as IP-sets and AP-rich sets.

Topological version $F(T)$

Topological version $F(T)$

$\beta \omega$ is the space of ultrafilters over the naturals. If T is a set of non-principal ultrafilters, then we have the game $F(T)$ with the rules:

Topological version $F(T)$

$\beta \omega$ is the space of ultrafilters over the naturals. If T is a set of non-principal ultrafilters, then we have the game $F(T)$ with the rules:

- Alice and Bob take turns choosing a natural number (principal ultrafilter).

Topological version $F(T)$

$\beta \omega$ is the space of ultrafilters over the naturals. If T is a set of non-principal ultrafilters, then we have the game $F(T)$ with the rules:

- Alice and Bob take turns choosing a natural number (principal ultrafilter).
- They cannot repeat previous choices.

Topological version $F(T)$

$\beta \omega$ is the space of ultrafilters over the naturals. If T is a set of non-principal ultrafilters, then we have the game $F(T)$ with the rules:

- Alice and Bob take turns choosing a natural number (principal ultrafilter).
- They cannot repeat previous choices.
- Alice wins if $\overline{\left\{a_{1}, a_{2}, \ldots\right\}} \cap T \neq \emptyset$.

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then $\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then $\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.
This game is actualy the same as $G S\left(\bigcup_{p \in T} p\right)$.

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then
$\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.
This game is actualy the same as $G S(\bigcup p)$. $p \in T$
Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then
$\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.
This game is actualy the same as $G S(\bigcup p)$. $p \in T$
Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).
A superfilter is a family \mathcal{S} of subsets of ω satisfying:

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then
$\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.
This game is actualy the same as $G S\left(\bigcup_{p \in T} p\right)$.
Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).
A superfilter is a family \mathcal{S} of subsets of ω satisfying:

- If $A \in \mathcal{S}$ and $A \subset B$, then $B \in \mathcal{S}$.

Topological version

Remember that for a set $A \subset \omega$ and $T \subset \omega^{*}$, then
$\bar{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.
This game is actualy the same as $G S\left(\bigcup_{p \in T} p\right)$.
Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).
A superfilter is a family \mathcal{S} of subsets of ω satisfying:

- If $A \in \mathcal{S}$ and $A \subset B$, then $B \in \mathcal{S}$.
- If $A \cup B \in \mathcal{S}$, then $A \in \mathcal{S}$ or $B \in \mathcal{S}$.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$,

$$
p \in \omega^{*} .
$$

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$,

$$
p \in \omega^{*} .
$$

- Alice wins $F(\mathcal{A P})$.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$,

$$
p \in \omega^{*}
$$

- Alice wins $F(\mathcal{A P})$.
- Alice wins $F_{\text {fin }}(\mathcal{A P})$.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^{*}$.
- Alice wins $F(\mathcal{A P})$.
- Alice wins $F_{\text {fin }}(\mathcal{A P})$.
- Bob wins $F_{\text {fin }}^{k}(\mathcal{A P})$ for any $k \in \omega$.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$,
- Alice wins $F_{\text {fin }}(\mathcal{I P})$. $p \in \omega^{*}$.
- Alice wins $F(\mathcal{A P})$.
- Alice wins $F_{f i n}(\mathcal{A P})$.
- Bob wins $F_{\text {fin }}^{k}(\mathcal{A P})$ for any $k \in \omega$.

Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^{*}$.
- Alice wins $F(\mathcal{A P})$.
- Alice wins $F_{\text {fin }}(\mathcal{A P})$.
- Bob wins $F_{\text {fin }}^{k}(\mathcal{A P})$ for any $k \in \omega$.

[^0]
Modifications

We can modify the amount of numbers each player chooses in his/her turn.
Define $F_{n}^{m}(T)$ for the game where Alice chooses m numbers in her turn and Bob chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.
Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^{*}$.
- Alice wins $F(\mathcal{A P})$.
- Alice wins $F_{\text {fin }}(\mathcal{A P})$.
- Bob wins $F_{\text {fin }}^{k}(\mathcal{A P})$ for any $k \in \omega$.
- Alice wins $F_{\text {fin }}(\mathcal{I P})$.
- Bob wins $F_{f i n}^{k}(\mathcal{I P})$ for any $k \in \omega$.
- Alice wins $F(T)$ for $T \subset \omega^{*}$ open or dense.

Relations with other games

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ Alice and Bob take turns choosing a natural number (may be repeated). Bob wins if his choices eventually dominates Alice's choices and the set of his choices is in \mathcal{F}.

Relations with other games

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ Alice and Bob take turns choosing a natural number (may be repeated). Bob wins if his choices eventually dominates Alice's choices and the set of his choices is in \mathcal{F}.

Theorem (Bartoszyński and Scheepers)

Alice has a winning strategy in $\mathcal{G}(\mathcal{F})$ if, and only if, \mathcal{F} is not a rare filter. (A rare ultrafilter is called a q-point)

The games $\mathcal{G}(T)$ and $F_{\text {fin }}^{1}(T)$ are dual.

Relations with other games

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ Alice and Bob take turns choosing a natural number (may be repeated). Bob wins if his choices eventually dominates Alice's choices and the set of his choices is in \mathcal{F}.

Theorem (Bartoszyński and Scheepers)

Alice has a winning strategy in $\mathcal{G}(\mathcal{F})$ if, and only if, \mathcal{F} is not a rare filter. (A rare ultrafilter is called a q-point)

The games $\mathcal{G}(T)$ and $F_{f i n}^{1}(T)$ are dual.
As a consequence, we get that if $p \in \omega^{*}$ is a q-point, then none of the players have a winning strategy in $F(p)$.

Relations with other games

The games $F_{f i n}(T)$ and $B M\left(2^{\omega}, T\right)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

Relations with other games

The games $F_{f i n}(T)$ and $B M\left(2^{\omega}, T\right)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

Theorem (Oxtoby)

Let X be a complete metric space and $T \subset X$, then

- Alice has winning strategy if in $B M(X, T)$, and only if, T is comeager in some open set of X.
- Bob has winning strategy in $B M(X, T)$ if, and only if, T is meager.

Relations with other games

The games $F_{f i n}(T)$ and $B M\left(2^{\omega}, T\right)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

Theorem (Oxtoby)

Let X be a complete metric space and $T \subset X$, then

- Alice has winning strategy if in $B M(X, T)$, and only if, T is comeager in some open set of X.
- Bob has winning strategy in $B M(X, T)$ if, and only if, T is meager.

An ultrafilter $p \in \omega^{*}$ is not meager nor comeager in 2^{ω}, so neither player has a winning strategy in $F_{\text {fin }}(p)$.

Relations with other games

Theorem (Talagrand)

A superfilter $\mathcal{S} \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_{1}, I_{2}, \ldots of ω in finite intervals such that for all infinite $N \subset \omega, \bigcup_{n \in N} I_{n} \in \mathcal{S}$. (Thanks to Andreas Blass)

Relations with other games

Theorem (Talagrand)

A superfilter $\mathcal{S} \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_{1}, I_{2}, \ldots of ω in finite intervals such that for all infinite $N \subset \omega, \bigcup_{n \in N} I_{n} \in \mathcal{S}$. (Thanks to Andreas Blass)

As a consequence we get that if $T \subset 2^{\omega}$ is the union of countable ultrafilters, then it is not comeager.

Relations with other games

Theorem (Talagrand)

A superfilter $\mathcal{S} \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_{1}, I_{2}, \ldots of ω in finite intervals such that for all infinite $N \subset \omega, \bigcup_{n \in N} I_{n} \in \mathcal{S}$. (Thanks to Andreas Blass)

As a consequence we get that if $T \subset 2^{\omega}$ is the union of countable ultrafilters, then it is not comeager.
Corolary: If $T \subset \omega^{*}$ is a countable set, then none of the players have a winning strategy in $F_{\text {fin }}(T)$.

Next steps

Next steps

- Is there some $p \in \omega^{*}$ for wich Bob has a winning strategy in $F(p)$?

Next steps

- Is there some $p \in \omega^{*}$ for wich Bob has a winning strategy in $F(p)$?
- Does any of the players have a winning strategy in $F(\mathcal{I P})$?

Next steps

- Is there some $p \in \omega^{*}$ for wich Bob has a winning strategy in $F(p)$?
- Does any of the players have a winning strategy in $F(\mathcal{I P})$?
- If Alice wins $F\left(T_{1} \cup T_{2}\right)$, does she win $F\left(T_{1}\right)$ or $F\left(T_{2}\right)$?

Next steps

- Is there some $p \in \omega^{*}$ for wich Bob has a winning strategy in $F(p)$?
- Does any of the players have a winning strategy in $F(\mathcal{I P})$?
- If Alice wins $F\left(T_{1} \cup T_{2}\right)$, does she win $F\left(T_{1}\right)$ or $F\left(T_{2}\right)$?
- Can we characterize the targets for wich Alice wins?

Next steps

- Is there some $p \in \omega^{*}$ for wich Bob has a winning strategy in $F(p)$?
- Does any of the players have a winning strategy in $F(\mathcal{I P})$?
- If Alice wins $F\left(T_{1} \cup T_{2}\right)$, does she win $F\left(T_{1}\right)$ or $F\left(T_{2}\right)$?
- Can we characterize the targets for wich Alice wins?
- Does Alice have a winning strategy in $F_{\text {fin }}(T)$ if $T \subset \omega^{*}$ is an uncountable set?

[^0]: José Carlos Fontanesi Kling

