

A topological game on the space of ultrafilters

José Carlos Fontanesi Kling

jose.kling@pm.me

Instituto de Ciências Matemáticas e de Computação ICMC - USP

Supervisor: Prof. Dr. Leandro Fiorini Aurichi

José Carlos Fontanesi Kling

Rules

José Carlos Fontanesi Kling

◆□▶ ◆罰▶ ◆言▶ ◆言▶ ─言 → ���

Rules

First we fix a family T of sets of natural numbers. That will be the target set.

José Carlos Fontanesi Kling

de Ciências Matemáticas e de Computação ICMC - USP

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の Q @

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- Two players, *Alice* and *Bob*, take turns alternately.

to de Ciências Matemáticas e de Computação ICMC - USP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- ▶ Two players, *Alice* and *Bob*, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- ▶ Two players, *Alice* and *Bob*, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.
- ► A play is an infinite string of pairwise distinct natural numbers (a₁, b₁, a₂, b₂,...), the terms a_n indicating *Alice*'s choices and b_n *Bob*'s choices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Rules

- First we fix a family T of sets of natural numbers. That will be the target set.
- ▶ Two players, *Alice* and *Bob*, take turns alternately.
- In each turn, the player chooses a natural number that has not been chosen by any player in the previous rounds.
- ► A play is an infinite string of pairwise distinct natural numbers (a₁, b₁, a₂, b₂,...), the terms a_n indicating *Alice*'s choices and b_n *Bob*'s choices.
- ▶ Alice wins if the set of her choices during the game is in T, that is, $\{a_1, a_2, a_3, ...\} \in T$. Bob wins otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

We can turn this game into a standard Gale-Stewart game with the following modifications:

José Carlos Fontanesi Kling

・ロト・西ト・ヨト・ヨト ヨー ろくの

We can turn this game into a standard Gale-Stewart game with the following modifications:

There are no restrictions to the players possible moves.

José Carlos Fontanesi Kling

to de Ciências Matemáticas e de Computação ICMC - USP

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

We can turn this game into a standard Gale-Stewart game with the following modifications:

- There are no restrictions to the players possible moves.
- Alice wins if the play is one of the following sets:

 $\{(a_1, b_1, a_2, b_2, \dots) \mid \{a_1, a_2, \dots\} \in T \text{ and all term are distinct}\}$

 $\{(a_1, b_1, a_2, b_2, \dots) \mid Bob \text{ is the first to repeat some number}\}$

・ロト・日本・モー・モー ショー ショー

We can turn this game into a standard Gale-Stewart game with the following modifications:

- There are no restrictions to the players possible moves.
- Alice wins if the play is one of the following sets:

 $\{(a_1, b_1, a_2, b_2, \dots) \mid \{a_1, a_2, \dots\} \in T \text{ and all term are distinct}\}$

 $\{(a_1, b_1, a_2, b_2, \dots) \mid Bob \text{ is the first to repeat some number}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

We are most interested in some specific targets, namely ultrafilters and sets that arise in Ramsey theoretical results, such as IP-sets and AP-rich sets.

José Carlos Fontanesi Kling

・ 日 ト ・ 日 ト ・ 田 ト ・ 日 ・ うへぐ

 $\beta\omega$ is the space of ultrafilters over the naturals. If T is a set of non-principal ultrafilters, then we have the game F(T) with the rules:

José Carlos Fontanesi Kling

o de Ciências Matemáticas e de Computação ICMC - USP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

 $\beta\omega$ is the space of ultrafilters over the naturals. If *T* is a set of non-principal ultrafilters, then we have the game *F*(*T*) with the rules:

 Alice and Bob take turns choosing a natural number (principal ultrafilter).

 $\beta\omega$ is the space of ultrafilters over the naturals. If *T* is a set of non-principal ultrafilters, then we have the game *F*(*T*) with the rules:

- Alice and Bob take turns choosing a natural number (principal ultrafilter).
- They cannot repeat previous choices.

 $\beta\omega$ is the space of ultrafilters over the naturals. If *T* is a set of non-principal ultrafilters, then we have the game *F*(*T*) with the rules:

- Alice and Bob take turns choosing a natural number (principal ultrafilter).
- They cannot repeat previous choices.
- Alice wins if $\overline{\{a_1, a_2, \dots\}} \cap T \neq \emptyset$.

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$.

José Carlos Fontanesi Kling

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$. This game is actually the same as $GS(\bigcup_{p \in T} p)$.

José Carlos Fontanesi Kling

o de Ciências Matemáticas e de Computação ICMC - USP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$. This game is actually the same as $GS(\bigcup_{p \in T} p)$. Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).

・ロト ・回ト ・ヨト ・ヨト … ヨ

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$. This game is actualy the same as $GS(\bigcup_{p \in T} p)$. Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).

A superfilter is a family S of subsets of ω satisfying:

・ロト ・回ト ・ヨト ・ヨト … ヨ

José Carlos Fontanesi Kling

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$. This game is actually the same as $GS(\bigcup_{p \in T} p)$. Sets that arise in Ramsey theoretical results are unions of

ultrafilters (called superfilters or coideals).

A superfilter is a family S of subsets of ω satisfying:

・ロト ・回ト ・ヨト ・ヨト … ヨ

• If $A \in S$ and $A \subset B$, then $B \in S$.

Remember that for a set $A \subset \omega$ and $T \subset \omega^*$, then $\overline{A} \cap T \neq \emptyset \Leftrightarrow \exists p \in T, A \in p$. This game is actually the same as GS(| | p).

Sets that arise in Ramsey theoretical results are unions of ultrafilters (called superfilters or coideals).

 $p \in T$

A superfilter is a family S of subsets of ω satisfying:

- If $A \in S$ and $A \subset B$, then $B \in S$.
- If $A \cup B \in S$, then $A \in S$ or $B \in S$.

We can modify the amount of numbers each player chooses in his/her turn.

José Carlos Fontanesi Kling

・ロト・日本・キャーキャーキョーのへの

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

José Carlos Fontanesi Kling

uto de Ciências Matemáticas e de Computação ICMC - USP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

Some results

José Carlos Fontanesi Kling

ito de Ciências Matemáticas e de Computação ICMC - USP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Some results

• Alice doesn't win $F(\{p\})$, $p \in \omega^*$.

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^*$.
- Alice wins $F(\mathcal{AP})$.

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^*$.
- Alice wins $F(\mathcal{AP})$.
- Alice wins $F_{fin}(\mathcal{AP})$.

We can modify the amount of numbers each player chooses in his/her turn

Define $F_n^m(T)$ for the game where Alice chooses m numbers in her turn and *Bob* chooses n numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Some results

• Alice doesn't win
$$F(\{p\})$$
, $p \in \omega^*$.

- \blacktriangleright Alice wins $F(\mathcal{AP})$.
- Alice wins F_{fin}(AP).
 Bob wins F^k_{fin}(AP) for

any
$$k \in \omega$$
.

We can modify the amount of numbers each player chooses in his/her turn.

Define $F_n^m(T)$ for the game where *Alice* chooses *m* numbers in her turn and *Bob* chooses *n* numbers. We can use *fin* to denote that the corresponding players may choose any finite amount of numbers.

Some results

- Alice doesn't win $F(\{p\})$, $p \in \omega^*$.
- Alice wins $F(\mathcal{AP})$.
- Alice wins $F_{fin}(\mathcal{AP})$.
- Bob wins $F_{fin}^{k}(\mathcal{AP})$ for

any $k \in \omega$.

José Carlos Fontanesi Kling

• Alice wins $F_{fin}(\mathcal{IP})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

We can modify the amount of numbers each player chooses in his/her turn

Define $F_n^m(T)$ for the game where Alice chooses m numbers in her turn and *Bob* chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.

Some results

- \blacktriangleright Alice doesn't win $F(\{p\})$, $p \in \omega^*$.
- ► Alice wins F(AP).
- Alice wins $F_{fin}(\mathcal{AP})$. Bob wins $F_{fin}^k(\mathcal{AP})$ for

any $k \in \omega$.

José Carlos Fontanesi Kling

- \blacktriangleright Alice wins $F_{fin}(\mathcal{IP})$.
- Bob wins $F_{fin}^k(\mathcal{IP})$ for any $k \in \omega$.

・ロト・日本・モー・モー ショー ショー

We can modify the amount of numbers each player chooses in his/her turn

Define $F_n^m(T)$ for the game where Alice chooses m numbers in her turn and *Bob* chooses n numbers. We can use fin to denote that the corresponding players may choose any finite amount of numbers.

Some results

- \blacktriangleright Alice doesn't win $F(\{p\})$, $p \in \omega^*$.
- ► Alice wins F(AP).
- Alice wins $F_{fin}(\mathcal{AP})$. Bob wins $F_{fin}^k(\mathcal{AP})$ for

any $k \in \omega$.

- \blacktriangleright Alice wins $F_{fin}(\mathcal{IP})$.
- Bob wins $F_{fin}^k(\mathcal{IP})$ for any $k \in \omega$.
- \blacktriangleright Alice wins F(T) for $T \subset \omega^*$ open or dense. (四)
 (1)

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ *Alice* and *Bob* take turns choosing a natural number (may be repeated). *Bob* wins if his choices eventually dominates *Alice*'s choices and the set of his choices is in \mathcal{F} .

José Carlos Fontanesi Kling

ito de Ciências Matemáticas e de Computação ICMC - USP

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ *Alice* and *Bob* take turns choosing a natural number (may be repeated). *Bob* wins if his choices eventually dominates *Alice*'s choices and the set of his choices is in \mathcal{F} .

Theorem (Bartoszyński and Scheepers)

Alice has a winning strategy in $\mathcal{G}(\mathcal{F})$ if, and only if, \mathcal{F} is not a rare filter. (A rare ultrafilter is called a q-point)

The games $\mathcal{G}(T)$ and $F_{fin}^1(T)$ are dual.

Let \mathcal{F} be a filter. In the game $\mathcal{G}(\mathcal{F})$ *Alice* and *Bob* take turns choosing a natural number (may be repeated). *Bob* wins if his choices eventually dominates *Alice*'s choices and the set of his choices is in \mathcal{F} .

Theorem (Bartoszyński and Scheepers)

Alice has a winning strategy in $\mathcal{G}(\mathcal{F})$ if, and only if, \mathcal{F} is not a rare filter. (A rare ultrafilter is called a q-point)

The games $\mathcal{G}(T)$ and $F_{fin}^1(T)$ are dual. As a consequence, we get that if $p \in \omega^*$ is a q-point, then none of the players have a winning strategy in F(p).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

The games $F_{fin}(T)$ and $BM(2^{\omega}, T)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

José Carlos Fontanesi Kling

▲□▶▲□▶▲□▶▲□▶ □ りへの

The games $F_{fin}(T)$ and $BM(2^{\omega}, T)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

Theorem (Oxtoby)

Let *X* be a complete metric space and $T \subset X$, then

- Alice has winning strategy if in BM(X,T), and only if, T is comeager in some open set of X.
- ▶ Bob has winning strategy in BM(X,T) if, and only if, T is meager.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

The games $F_{fin}(T)$ and $BM(2^{\omega}, T)$, the Banach-Mazur game on 2^{ω} with target T, are equivalent.

Theorem (Oxtoby)

Let *X* be a complete metric space and $T \subset X$, then

- Alice has winning strategy if in BM(X,T), and only if, T is comeager in some open set of X.
- ▶ Bob has winning strategy in BM(X,T) if, and only if, T is meager.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

An ultrafilter $p \in \omega^*$ is not meager nor comeager in 2^{ω} , so neither player has a winning strategy in $F_{fin}(p)$.

Theorem (Talagrand)

A superfilter $S \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_1, I_2, \ldots of ω in finite intervals such that for all infinite $N \subset \omega$, $\bigcup_{n \in N} I_n \in S$. (Thanks to Andreas Blass)

José Carlos Fontanesi Kling

de Ciências Matemáticas e de Computação ICMC - USP

Theorem (Talagrand)

A superfilter $S \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_1, I_2, \ldots of ω in finite intervals such that for all infinite $N \subset \omega$, $\bigcup_{n \in N} I_n \in S$. (Thanks to Andreas Blass)

As a consequence we get that if $T \subset 2^{\omega}$ is the union of countable ultrafilters, then it is not comeager.

Theorem (Talagrand)

A superfilter $S \subset 2^{\omega}$ is comeager if, and only if, there is a partition I_1, I_2, \ldots of ω in finite intervals such that for all infinite $N \subset \omega$, $\bigcup_{n \in N} I_n \in S$. (Thanks to Andreas Blass)

As a consequence we get that if $T \subset 2^{\omega}$ is the union of countable ultrafilters, then it is not comeager. Corolary: If $T \subset \omega^*$ is a countable set, then none of the players have a winning strategy in $F_{fin}(T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

José Carlos Fontanesi Kling

▲□▶▲□▶▲目▶▲目▶ 目 のへで

► Is there some $p \in \omega^*$ for wich *Bob* has a winning strategy in F(p)?

José Carlos Fontanesi Kling

oiae Matemáticae o do Computação ICMC - LISP -

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

- ► Is there some $p \in \omega^*$ for wich *Bob* has a winning strategy in F(p)?
- Does any of the players have a winning strategy in $F(\mathcal{IP})$?

José Carlos Fontanesi Kling

o de Ciências Matemáticas e de Computação ICMC - USP

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- ► Is there some $p \in \omega^*$ for wich *Bob* has a winning strategy in F(p)?
- ▶ Does any of the players have a winning strategy in F(IP)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

▶ If Alice wins $F(T_1 \cup T_2)$, does she win $F(T_1)$ or $F(T_2)$?

José Carlos Fontanesi Kling

- Is there some p ∈ ω* for wich Bob has a winning strategy in F(p)?
- ▶ Does any of the players have a winning strategy in F(IP)?
- ▶ If Alice wins $F(T_1 \cup T_2)$, does she win $F(T_1)$ or $F(T_2)$?
- Can we characterize the targets for wich Alice wins?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

- ► Is there some $p \in \omega^*$ for wich *Bob* has a winning strategy in F(p)?
- ▶ Does any of the players have a winning strategy in F(IP)?
- ▶ If Alice wins $F(T_1 \cup T_2)$, does she win $F(T_1)$ or $F(T_2)$?
- Can we characterize the targets for wich Alice wins?
- ► Does *Alice* have a winning strategy in $F_{fin}(T)$ if $T \subset \omega^*$ is an uncountable set?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆